Частица атомного ядра как называется. Какие компоненты входят в состав ядра

Атомное ядро: строение, масса, состав

Частица атомного ядра как называется. Какие компоненты входят в состав ядра

Изучая состав вещества, ученые пришли к выводу, что вся материя состоит из молекул и атомов. Долгое время атом (в переводе с греческого “неделимый”) считался наименьшей конструкционной единицей вещества. Однако дальнейшие исследования показали, что атом имеет сложное строение и, в свою очередь, включает более мелкие частицы.

Из чего состоит атом?

В 1911 году ученый Резерфорд высказал предположение, что в атоме имеется центральная часть, обладающая положительным зарядом. Так впервые появилось понятие об атомном ядре.

По схеме Резерфорда, названной планетарной моделью, атом состоит из ядра и элементарных частиц с отрицательным зарядом – электронов, движущихся вокруг ядра, подобно тому, как планеты обращаются по орбите вокруг Солнца.

В 1932 году другой ученый, Чедвик, открыл нейтрон – частицу, не имеющую электрического заряда.

Согласно современным представлениям, строение атомного ядра соответствует планетарной модели, предложенной Резерфордом. Ядро несет в себе большую часть атомной массы. Также оно имеет положительный заряд.

В атомном ядре находятся протоны – положительно заряженные частицы и нейтроны – частицы, не несущие заряда. Протоны и нейтроны называются нуклонами.

Отрицательно заряженные частицы – электроны – движутся по орбите вокруг ядра.

Количество протонов в ядре равняется числу электронов, движущихся по орбите. Следовательно, сам атом является частицей, не несущей заряда. Если атом захватит чужие электроны или потеряет свои, то он становится положительным или отрицательным и называется ионом.

Электроны, протоны и нейтроны обобщенно называют субатомными частицами.

Заряд атомного ядра

Ядро имеет зарядовое число Z. Оно определяется количеством протонов, входящих в состав атомного ядра. Узнать это количество просто: достаточно обратиться к периодической системе Менделеева.

Порядковый номер элемента, которому принадлежит атом, равняется количеству протонов в ядре. Таким образом, если химическому элементу кислороду соответствует порядковый номер 8, то количество протонов тоже будет равняться восьми.

Поскольку число протонов и электронов в атоме совпадает, то электронов тоже будет восемь.

Количество нейтронов называют изотопическим числом и обозначают буквой N. Их число может различаться в атоме одного и того же химического элемента.

Сумма протонов и электронов в ядре называется массовым числом атома и обозначается буквой А. Таким образом, формула подсчета массового числа выглядит так: А=Z+N.

Изотопы

В случае, когда элементы имеют равное количество протонов и электронов, но разное число нейтронов, их называют изотопами химического элемента. Изотопов может быть один или несколько. Они помещаются в одну и ту же ячейку периодической системы.

Изотопы имеют большое значение в химии и физике. Например, изотоп водорода – дейтерий – в сочетании с кислородом дает совершенно новую субстанцию, которую называют тяжелой водой.

Она имеет иную температуру кипения и замерзания, чем обычная.

А сочетание дейтерия с другим изотопом водорода – тритием приводит к термоядерной реакции синтеза и может использоваться для выработки огромного количества энергии.

Масса ядра и субатомных частиц

Размеры и масса атомов и субатомных частиц ничтожно малы в представлениях человека. Размер ядер составляется примерно 10-12см. Массу атомного ядра измеряют в физике в так называемых атомных единицах массы – а.е.м.

За одну а.е.м. принимают одну двенадцатую часть массы атома углерода. Используя привычные единицы измерения (килограммы и граммы), массу можно выразить следующим равенством: 1 а.е.м. = 1,660540·10-24г. Выраженная таким образом, она называется абсолютной атомной массой.

Несмотря на то, что атомное ядро является самой массивной составляющей атома, его размеры относительно электронного облака, окружающего его, чрезвычайно малы.

Ядерные силы

Атомные ядра являются чрезвычайно устойчивыми. Это значит, что протоны и нейтроны удерживаются в ядре какими-то силами.

Это не могут быть электромагнитные силы, поскольку протоны являются одноименно заряженными частицами, а известно, что частицы, обладающие одинаковым зарядом, отталкиваются друг от друга.

Гравитационные силы же слишком слабы, чтобы удержать нуклоны вместе. Следовательно, частицы удерживаются в ядре иным взаимодействием – ядерными силами.

Ядерное взаимодействие считается самым сильным из всех существующих в природе. Поэтому данный тип взаимодействия между элементами атомного ядра называют сильным. Оно присутствует у множества элементарных частиц, как и электромагнитные силы.

Особенности ядерных сил

  1. Короткодействие. Ядерные силы, в отличие от электромагнитных, проявляются лишь на очень малых расстояниях, сопоставимых с размерами ядра.
  2. Зарядовая независимость. Данная особенность проявляется в том, что ядерные силы действуют одинаково на протоны и нейтроны.
  3. Насыщение. Нуклоны ядра взаимодействуют лишь с определенным числом других нуклонов.

Энергия связи ядра

С понятием сильного взаимодействия тесно связано другое – энергия связи ядер. Под энергией ядерной связи понимают то количество энергии, которое требуется, чтобы разделить атомное ядро на составляющие его нуклоны. Она равняется энергии, необходимой для формирования ядра из отдельных частиц.

Для вычисления энергии связи ядра необходимо знать массу субатомных частиц. Вычисления показывают, что масса ядра всегда меньше, чем сумма входящих в его состав нуклонов. Дефектом массы называют разницу между массой ядра и суммой его протонов и электронов. При помощи формулы Эйнштейна о связи массы и энергии (Е=mc2) можно вычислить энергию, выработанную при образовании ядра.

О силе энергии связи ядра можно судить по следующему примеру: при образовании нескольких граммов гелия вырабатывается столько же энергии, сколько при сгорании нескольких тонн каменного угля.

Ядерные реакции

Ядра атомов могут взаимодействовать с ядрами других атомов. Такие взаимодействия называются ядерными реакциями. Реакции бывают двух типов.

  1. Реакции деления. Они происходят, когда более тяжелые ядра в результате взаимодействия распадаются на более легкие.
  2. Реакции синтеза. Процесс, обратный делению: ядра сталкиваются, тем самым образуя более тяжелые элементы.

Все ядерные реакции сопровождаются выбросом энергии, которая впоследствии используется в промышленности, в военной сфере, в энергетике и так далее.

Ознакомившись с составом атомного ядра, можно сделать следующие выводы.

  1. Атом состоит из ядра, содержащего протоны и нейтроны, и электронов, находящихся вокруг него.
  2. Массовое число атома равняется сумме нуклонов его ядра.
  3. Нуклоны удерживаются сильным взаимодействием.
  4. Огромные силы, придающие атомному ядру стабильность, называются энергиями связи ядра.

Источник: https://FB.ru/article/22706/cu-atomnoe-yadro-stroenie-massa-sostav

Характеристики ядра

Частица атомного ядра как называется. Какие компоненты входят в состав ядра

Основными характеристиками атомных ядер являются электрический заряд, масса, спин, энергия связи и так далее.

Заряд ядра

Ядро каждого из атомов обладает положительным зарядом. В качестве носителя положительного заряда выступает протон.

По той причине, что заряд протона численно эквивалентен заряду электрона e, можно записать, что заряд ядра элемента равен +Ze (Z выражает собой целое число, которое указывает на порядковый номер химического элемента в периодической системе химических элементов Д. И. Менделеева).

Значение Z также характеризует число протонов, входящих в состав ядра и количество электронов в атоме. Именно из-за этого его определяют как атомный номер ядра. Электрический заряд представляет собой одну из основных характеристик атомного ядра, от которой зависят оптические, химические и иные свойства атомов.

Масса ядра

Существует также другая значимая характеристика ядра, а именно масса. Массу атомов и ядер принято выражать в атомных единицах массы (а.е.м.), в качестве атомной единицы массы выступает 112 массы нуклида углерода C612:

где NA=6,022·1023 моль-1 обозначает число Авогадро.

Кроме того, есть другой способ выражения атомной массы: исходя из соотношения Эйнштейна E=mc2, ее выражают в единицах энергии. По той причине, что масса протона mp=1.00728 а.е.м.=938,28 МэВ, масса нейтрона mn=1.00866а.е.м.=939,57МэВ, а масса электрона me=5,49⋅10-4 а.е.м.=0,511МэВ,

Из приведенных выше значений видно, что масса электрона несущественно мала, если сравнивать ее с массой ядра, поэтому масса ядра практически эквивалентна массе всего атома и отлична от целых чисел.

Определение 1

Масса ядра, которая выражается в а.е.м. и округляется до целого числа носит название массового числа и обозначается с помощью буквы A. Она характеризует количество нуклонов, находящихся в составе ядра.

Количество нейтронов в ядре эквивалентно N=A−Z. В качестве обозначения ядер используют символ XZA, в котором X определяется как химический символ этого элемента.

Определение 2

Атомные ядра, обладающие одинаковым числом протонов, однако при этом отличающимися друг от друга массовыми числами, носят название изотопов.

В некоторых элементах количество стабильных и нестабильных изотопов достигает десятков, в качестве примера, уран обладает 14 изотопами: от U92227 до U92240. Большая часть химических элементов, которые существуют в природе, являются смесью нескольких изотопов.

Как раз наличие изотопов объясняет следующее явление: некоторые природные элементы обладают массой, которая является отличной от целых чисел. В качестве примера рассмотрим природный хлор, который состоит из 75% C1735l и 24% C1737l, а его атомная масса эквивалентна 35,5 а.е.м.

В большей части атомов, исключая водород, изотопы обладают практически равными физическими и химическими свойствами. Однако, за своими, исключительно ядерными свойствами, изотопы значительно отличаются друг от друга.

Какие-то из них могут представлять собой стабильные изотопы, а другие – радиоактивные.

Определение 3

Ядра с эквивалентными массовыми числами, но отличающимися значениями Z носят название изобар, в качестве примера, A1840r, C2040a.

Определение 4

Ядра с одинаковым числом нейтронов определяют как изотоны.

Определение 5

Среди легких ядер встречаются и так называемые «зеркальные» пары ядер. Это такие пары ядер, в которых числа Z и A−Z меняются местами. В качестве примера подобных ядер можно привести C613 и N713 или H13 и H23e.

Опиши задание

Размер атомного ядра

Принимая форму атомного ядра приблизительно сферической, мы имеем возможность ввести понятие его радиуса R. Обратим внимание на то, что в некоторых ядрах есть небольшое отклонение от симметрии в распределении электрического заряда. Более того, атомные ядра представляют собой не статические, а динамические системы, и понятие радиуса ядра нельзя представлять как радиус шара.

Именно из-за этого факта, в качестве размеров атомного ядра нужно принимать ту область, в которой проявляются ядерные силы. В процессе создания количественной теории рассеивания α-частиц Э. Резерфорд исходил из тех предположений, что атомное ядро и α – частица взаимодействуют по закону Кулона, Другими словами из того, что электрическое поле вокруг ядра обладает сферической симметрией.

Это работает в отношении α – частиц, обладающих достаточно малым значением энергии E.

При этом частица не имеет возможности преодолеть кулоновский потенциальный барьер и в последствии не достигает области, в которой наблюдается действие ядерных сил.

Одновременно с повышением энергии частицы до некоторого граничного значения Eгр, α-частица достигает данной границы. В таком случае в рассеянии α-частиц возникает некоторое отклонение от формулы Резерфорда.

Опытным путем было определено, что радиус R ядра является зависимым от числа нуклонов, которые входят в состав ядра.

Размеры ядер определяют экспериментальным путем по рассеянию протонов, быстрых нейтронов или же электронов высоких энергий. Существует также целый список иных косвенных способов получения значений размеров ядер. Они основываются:

  • на связи времени жизни α – радиоактивных ядер с энергией выпущенных ими α – частиц;
  • на оптических свойствах, носящих название мезоатомов, в которых один из электронов временно захвачен мюоном;
  • на сравнении энергий связи парных зеркальных атомов.

Данные способы подтверждают эмпирическую зависимость R=R0A1/3, а также благодаря таким измерениям определено значение постоянной R0=1,2-1,5·10-15 м.

Обратим свое внимание также на тот факт, что за единицу расстояний в атомной физике и физике элементарных частиц принимают единицу измерения «ферми», которая равняется 10-15 м 1 ф=10-15 м.

Радиусы атомных ядер определяются их массовым числом и находятся в промежутке от 2·10-15 до 10-14 м. Если из формулы R=R0A1/3 выразить R0 и записать его в следующем виде 4πR33A=const, то можно заметить, что на каждый нуклон приходится примерно одинаковый объем.

Из данного факта можно сделать вывод о том, что плотность ядерного вещества для всех ядер так же приблизительно одинакова. Как можно заметить, плотность ядерного вещества довольно велика. Этот факт основывается на действие ядерных сил.

Энергия связи. Дефект масс ядер

Определение 6

Величину ∆m, что определяет разницу масс между массой нуклонов, которые формируют ядро, и массой ядра, называют дефектом массы ядра.

Важные сведения о свойствах ядра могут быть получены даже при отсутствии знаний о подробностях взаимодействия между нуклонами ядра, на основании закона сохранения энергии и закона пропорциональности массы и энергии.

Поскольку в результате каждого изменения массы ∆m происходит соответствующее изменение энергии ∆E(∆E=∆mc2), то при образовании ядра выделяется некоторое количество энергии.

Исходя из закона сохранения энергии можно сделать вывод о том, что ровно такое же количество энергии необходимо для того, чтобы разделить ядро на составляющие его элементы, другими словами отдалить нуклоны друг от друга на такие расстояния, при которых взаимодействия между ними не происходит. Данную энергию определяют как энергию связи ядра.

Замечание 1

Заметим, что данная формула довольно неудобная в применении, так как в таблицах приводиться не массы ядер, а массы, которые относятся к массам нейтральных атомов.

По этой причине ради удобства вычислений формулу преобразуют таким образом, чтобы в нее входили не массы атомов, а массы ядер. Для достижения этой цели в правой части формулы добавим и отнимем массу Z электронов (me).

В таком случае Eсв=Zmp+me+A-Zmn-mя+Zmec2=ZmH11+A-Zmn-mac2 — масса атома водорода, ma — масса атома.

В ядерной физике энергию зачастую выражают в мегаэлектрон-вольтах (МэВ). Если речь идет о практическом применении ядерной энергии, то ее измеряют в джоулях. В случае сравнения энергии двух ядер используют массовую единицу энергии — соотношение между массой и энергией (E=mc2). Массовая единица энергии (le) равняется энергии, что соответствует массе в одну а.е.м. Она равняется 931,502 МэВ.

Рисунок 1

Определение 7

Кроме энергии, важное значение имеет удельная энергия связи ядра — энергия связи, которая припадает на один нуклон: ω=Ecв/A. Эта величина меняется сравнительно медленно по сравнению со сменой массового числа A, имея почти постоянную величину 8.6 МэВ в средней части периодической системы и уменьшается до ее краев.

Дефект массы

Энергия связи в МэВ: Eсв=∆m·931,502=0,030359·931,502=28,3 МэВ;

Удельная энергия связи: ω=EсвA=28,3 МэВ4≈7.1 МэВ.

Источник: https://Zaochnik.com/spravochnik/fizika/atomy-jadra/harakteristiki-jadra/

О законе
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: