Квадратное уравнение x. Способы решения квадратных уравнений

Содержание
  1. Квадратные уравнения
  2. Приведённое квадратное уравнение
  3. Решение квадратных уравнений
  4. Три полезных лайфхака, как решать квадратные уравнения быстрее, чем через дискриминант
  5. Формула корней, или длинный способ
  6. Лайфхак первый. Если a + b + c = 0, то x_1=1, x_2=\frac{c}{a}.
  7. Лайфхак второй. Если a + c = b, то x_1=-1, x_2=-\frac{c}{a}
  8. Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то \begin{cases} x_1+x_2 = -b \ x_1 \cdot x_2 = c \end{cases}
  9. Тренировочные упражнения по решению квадратных уравнений
  10. Решение квадратных уравнений
  11. Дискриминант
  12. Корни квадратного уравнения
  13. Неполные квадратные уравнения
  14. Правила решения квадратных уравнений
  15. ☝ Сокращайте.
  16. ☝ Переставьте слагаемые в порядке понижения степени.
  17. ☝ Домножьте на минус один.
  18. ☝ Используйте целочисленные коэффициенты.
  19. ☝ Применяйте эффективные способы решения.
  20. ☝ За 10 секунд не решили устно — считайте письменно.
  21. ☝ Не спешите перемножать числа в дискриминанте.
  22. ☝ Используйте теорему Виета для проверки корней.
  23. ☝ Задумайтесь, если коэффициенты иррациональны.
  24. Решение квадратных уравнений: формула корней, примеры
  25. Квадратное уравнение, его виды
  26. Приведенные и неприведенные квадратные уравнения
  27. Полные и неполные квадратные уравнения
  28. Решение неполных квадратных уравнений
  29. Решение уравнения a·x2=0
  30. Решение уравнения a·x2+c=0
  31. Формула корней для четных вторых коэффициентов
  32. Упрощение вида квадратных уравнений
  33. Связь между корнями и коэффициентами

Квадратные уравнения

Квадратное уравнение x. Способы решения квадратных уравнений

  • Приведённое квадратное уравнение
  • Решение квадратных уравнений

Квадратное уравнение или уравнение второй степени с одним неизвестным — это уравнение, которое после преобразований может быть приведено к следующему виду:

ax2 + bx + c = 0  — квадратное уравнение,

где  x  — это неизвестное, а  ab  и  c  — коэффициенты уравнения. В квадратных уравнениях  a  называется первым коэффициентом  (a ≠ 0),  b  называется вторым коэффициентом, а  c  называется известным или свободным членом.

Уравнение:

ax2 + bx + c = 0

называется полным квадратным уравнением. Если один из коэффициентов  b  или  c  равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения.

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на  a,  то есть на первый коэффициент:

Затем можно избавиться от дробных коэффициентов, обозначив их буквами  p  и  q:

то получится   x2 + px + q = 0.

Уравнение  x2 + px + q = 0  называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

Например, уравнение:

x2 + 10x – 5 = 0

является приведённым, а уравнение:

-3x2 + 9x – 12 = 0

можно заменить приведённым уравнением, разделив все его члены на  -3:

x2 – 3x + 4 = 0.

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

ax2 + bx + c = 0;

ax2 + 2kx + c = 0;

x2 + px + q = 0.

Для каждого вида уравнения есть своя формула нахождения корней:

Вид уравненияФормула корней
ax2 + bx + c = 0
ax2 + 2kx + c = 0
x2 + px + q = 0
или
если коэффициент  p  нечётный

Обратите внимание на уравнение:

ax2 + 2kx + c = 0

это преобразованное уравнение  ax2 + bx + c = 0,  в котором коэффициент  b  — четный, что позволяет его заменить на вид  2k.  Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё  2k  вместо  b:

Пример 1. Решить уравнение:

3x2 + 7x + 2 = 0.

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала определим, чему равны коэффициенты:

a = 3,  b = 7,  c = 2.

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

x1 = -2 = –1,   x2 = -12 = -2
636

Пример 2:

x2 – 4x – 60 = 0.

Определим, чему равны коэффициенты:

a = 1,  b = -4,  c = -60.

Так как в уравнении второй коэффициент — чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

x1 = 2 + 8 = 10,   x2 = 2 – 8 = -6

Ответ:  10,  -6.

Пример 3.

y2 + 11y = y – 25.

Приведём уравнение к общему виду:

y2 + 11y = y – 25;

y2 + 11yy + 25 = 0;

y2 + 10y + 25 = 0.

Определим, чему равны коэффициенты:

a = 1,  p = 10,  q = 25.

Так как первый коэффициент равен  1,  то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Ответ:  -5.

Пример 4.

x2 – 7x + 6 = 0.

Определим, чему равны коэффициенты:

a = 1,  p = -7,  q = 6.

Так как первый коэффициент равен  1,  то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

x1 = (7 + 5) : 2 = 6,

x2 = (7 – 5) : 2 = 1.

Ответ:  6,  1.

Новое на сайте|contact@izamorfix.ru
2018 − 2020©izamorfix.ru

Источник: https://izamorfix.ru/matematika/algebra/kvadratnye_uravn.html

Три полезных лайфхака, как решать квадратные уравнения быстрее, чем через дискриминант

Квадратное уравнение x. Способы решения квадратных уравнений

Я им такую классную теорему придумал,а они решают через дискриминант :-(((

(с) Франсуа Виет

“Несуществующие высказывания”

Формула корней, или длинный способ

Всем, кто хотя бы мало-мальски присутствовал на уроках математики в 8 классе, известна формула корней квадратного уравнения. Решение по формуле корней часто называют в простонародье “решением через дискриминант”. Напомним вкратце формулу корней.

[Вы можете также просмотреть содержание этой статьи в видеоформате]

Квадратное уравнение имеет вид ax2+bx+c = 0, где a, b, c – некоторые числа. Например, в уравнении 2×2 + 3x – 5 = 0 эти числа равны: a = 2, b = 3. c = -5. Прежде, чем решать любое квадратное уравнение, нужно “увидеть” эти числа и понять, чему они равны.

Далее считают так называемый дискриминант по формуле D=b2-4ac. В нашем случае D = 32 – 4 \cdot 2 \cdot (-5) = 9 + 40 = 49. Затем из дискриминанта извлекают корень: \sqrt{D} = \sqrt{49} = 7.

После того, как вычислили дискриминант, применяют формулу корней: x_1=\frac{-b-\sqrt{D}}{2a}; x_2=\frac{-b+\sqrt{D}}{2a} :

x_1=\frac{-3-7}{2 \cdot 2}=\frac{-10}{4}=-2,5
x_2= \frac{-3+7}{2 \cdot 2}=\frac{4}{4}=1

И таким образом, уравнение решено. Оно имеет два корня: 1 и -2,5.

Но это уравнение, как и множество других предлагаемых в школьных учебниках/задачниках, можно было решить гораздо более быстрым способом, если знать пару-тройку лайфхаков. И речь не только о теореме Виета, хотя и она является полезным инструментом.

Лайфхак первый. Если a + b + c = 0, то x_1=1, x_2=\frac{c}{a}.

Он применяется только в том случае, если в квадратном уравнении все три коэффициента a, b, c при сложении дают 0. Например, у нас было уравнение 2x2 + 3x – 5 = 0. Сложив все три коэффициента, получим 2 + 3 – 5, что равно 0. В этом случае можно не считать дискриминант и не применять формулу корней. Вместо этого можно сразу написать, что

x_1=1,
x_2=\frac{c}{a}=\frac{-5}{2}=-2,5

(заметьте, что тот же результат мы получили в формуле корней).

Часто спрашивают, всегда ли будет получаться x_1=1? Да, всегда, когда a + b + c = 0.

Лайфхак второй. Если a + c = b, то x_1=-1, x_2=-\frac{c}{a}

Пусть дано уравнение 5x2 + 6x + 1 = 0. В нём a = 5, b = 6, c = 1. Если сложить “крайние” коэффициенты a и c, получим 5+1 = 6, что как раз равно “среднему” коэффициенту b. Значит, можем обойтись без дискриминанта! Сразу же записываем:

x_1=-1,
x_2=-\frac{c}{a}=\frac{-1}{5}=-0,2

Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то \begin{cases} x_1+x_2 = -b \\ x_1 \cdot x_2 = c \end{cases}

Рассмотрим уравнение x2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.

Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.

Первый приём. Не стоит стесняться записывать саму систему вида \begin{cases} x_1+x_2 = -b \\ x_1 \cdot x_2 = c \end{cases} , которая получается при использовании теоремы Виета. Не нужно пытаться во что бы ты ни стало решить уравнение абсолютно устно, без письменных пометок, как это делают “продвинутые пользователи”.

Для нашего уравнения x2 – 12x + 35 = 0 эта система имеет вид

\begin{cases} x_1+x_2 = 12 \\ x_1 \cdot x_2 = 35 \end{cases}

Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.

Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения.

Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5.

И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:

x_1 = 7, x_2 = 5

Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.

Тренировочные упражнения по решению квадратных уравнений

Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:

  • если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
  • если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
  • если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
  • и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь!
  1. Решите уравнение x2 + 3x + 2 = 0

    Просмотреть решение и ответСм. лайфхак второй
    В данном уравнении a = 1, b = 3, c = 2. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{2}{1}=-2.
    Ответ: -1, -2.

  2. Решите уравнение x2 + 8x – 9 = 0

    Просмотреть решение и ответ См. лайфхак первый
    В данном уравнении a = 1, b = 8, c = -9. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-9}{1}=-9.
    Ответ: 1, -9.

  3. Решите уравнение 15×2 – 11x + 2 = 0

    Просмотреть решение и ответДанное уравнение (единственное из всего списка) не попадает ни под один из лайфхаков, поэтому решать его будем по формуле корней:
    D=b2-4ac = (-11)2 – 4 \cdot 15 \cdot 2 = 121 – 120 = 1.x_1=\frac{11-1}{2 \cdot 15}=\frac{10}{30}=\frac{1}{3}x_2= \frac{11+1}{2 \cdot 15}=\frac{12}{30}=\frac{2}{5}Ответ: \frac{1}{3}, \frac{2}{5}.

  4. Решите уравнение x2 + 9x + 20 = 0

    Просмотреть решение и ответ См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = -9 \\ x_1 \cdot x_2 = 20 \end{cases}
    Подбором устанавливаем, что x_1 = -4, x_2 = -5.Ответ: -4, -5.

  5. Решите уравнение x2 – 7x – 30 = 0

    Просмотреть решение и ответ См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 7 \\ x_1 \cdot x_2 = -30 \end{cases}
    Подбором устанавливаем, что x_1 = 10, x_2 = -3.
    Ответ: 10, -3.

  6. Решите уравнение x2 – 19x + 18 = 0

    Просмотреть решение и ответ См. лайфхак первый
    В данном уравнении a = 1, b = -19, c = 18. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{18}{1}=18.
    Ответ: 1, 18.

  7. Решите уравнение x2 + 7x + 6 = 0

    Просмотреть решение и ответ См. лайфхак второй
    В данном уравнении a = 1, b = 7, c = 6. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{6}{1}=-6.
    Ответ: -1, -6.

  8. Решите уравнение x2 – 8x + 12 = 0

    Просмотреть решение и ответ См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 8 \\ x_1 \cdot x_2 = 12 \end{cases}
    Подбором устанавливаем, что x_1 = 6, x_2 = 2.
    Ответ: 6, 2.

  9. Решите уравнение x2 – x – 6 = 0

    Просмотреть решение и ответ См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 1 \\ x_1 \cdot x_2 = -6 \end{cases}
    Подбором устанавливаем, что x_1 = 3, x_2 = -2.
    Ответ: 3, -2.

  10. Решите уравнение x2 – 15x – 16 = 0

    Просмотреть решение и ответ См. лайфхак второй
    В данном уравнении a = 1, b = -15, c = -16. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{-16}{1}=16.
    Ответ: -1, 16.

  11. Решите уравнение x2 + 11x – 12 = 0

    Просмотреть решение и ответ См. лайфхак первый
    В данном уравнении a = 1, b = 11, c = -12. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-12}{1}=-12.
    Ответ: 1, -12.

Источник: https://mat-ege.ru/uncategorized/kak-reshat-kvadratnye-uravneniya-bystree-chem-cherez-diskriminant/

Решение квадратных уравнений

Квадратное уравнение x. Способы решения квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5×2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5×2 + 30 = 0;
  3. 4×2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5×2 + 30 = 0 ⇒ 5×2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4×2 − 9 = 0 ⇒ 4×2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Источник: https://www.berdov.com/docs/equation/quadratic_equations/

Правила решения квадратных уравнений

Квадратное уравнение x. Способы решения квадратных уравнений

Мало просто научиться применять эффективные способы решений квадратных уравнений. Необходимо соблюдать ещё некоторые правила, чтобы знать все тонкости применения этих приёмов и не совершать случайных ошибок. Мы собрали такие правила в отдельный список.

☝ Сокращайте.

Самое простое правило, которое большинство учеников соблюдает. Если у коэффициентов квадратного уравнения есть общий множитель, то на него нужно сократить:

В противном случае можно глубоко закопаться при решении первоначального уравнения.

☝ Переставьте слагаемые в порядке понижения степени.

Иногда старшеклассники получают после преобразований полное квадратное уравнение, но при этом одночлены расположены не в порядке убывания их степени. Например, вот так:

Дальше ученик, понадеявшись на свой могучий ум, решает это уравнение. Рассуждает он так: «Чему равны коэффициенты a, b, и c и так видно без перестановки.

Я лучше не буду тратить время на переписывание и сразу посчитаю дискриминант». Интересно, что памяти обычно хватает, чтобы нормально посчитать дискриминант.

Но когда дело доходит до корней, ученик забывает, что трёхчлен слева у него не переставлен, и стабильно путает коэффициенты. Это приводит к неправильному решению.

Чтобы этого не происходило, достаточно сделать перестановку:

В таком виде уже можно решать любым удобным способом.

☝ Домножьте на минус один.

Получив квадратное уравнение в таком виде:

ученики резво начинают его решать через дискриминант. В принципе, при последовательном применении алгоритма ошибок не должно быть. Однако, довольно часто вмешивается человеческий фактор.

При отрицательном первом коэффициенте ученики часто забывают про знак «минус» и получают ошибочные корни.

Чтобы перестраховаться, достаточно домножить уравнение на –1, и получить положительный коэффициент при x²:

Вот такое уравнение гораздо приятнее решать.

☝ Используйте целочисленные коэффициенты.

Рассмотрим уравнение:

Не стоит бросаться в решение с головой и сразу начинать считать дискриминант. Наверняка, в конечном счёте у вас всё получится, но всё же стоит упростить себе задачу. Дробные коэффициенты очень неудобны, поэтому от них надо постараться избавится.

Для этого нужно домножить уравнение на подходящее число. В примере выше нужно домножить на 5. Но судя по нашему опыту, ученики не сразу это делают. Чаще всего они домножают на 10, а потом, заметив, что все коэффициенты чётные, сокращают на 2 (см.

первое правило).

Получается вот такое удобное уравнение:

☝ Применяйте эффективные способы решения.

В прошлой статье мы рассмотрели несколько способов решения квадратного уравнения. Однако, несмотря на их высокую эффективность, большинство учеников их не применяет, даже когда о них знает. Эти приёмы остаются лишь забавными фокусами, которыми можно удивить друзей.

Чтобы реально овладеть этими методами, мало про них просто прочитать. Их нужно многократно использовать.

Вместо этого даже вне стрессовой ситуации (например, во время подготовки к экзаменам) ученики решают неэффективными, но хорошо им знакомыми приёмами. Происходит закрепление неэффективных шаблонов.

Из такой петли слабых решений необходимо вырываться через практику. После изучения новых методов, старайтесь сразу пробовать их применять.

Отметим, что это правило действует только во время подготовки, то есть когда вы только учитесь новым приёмам. На самом же экзамене нужно выбирать самый эффективный способ лишь из тех, которые вы освоили. Там уже опасно применять новомодные приёмы решения, если не выработали навык их использования.

☝ За 10 секунд не решили устно — считайте письменно.

Часто ученики «подвисают», пытаясь решить какое-нибудь уравнение сразу в уме. Это похвально, но если вы ищете корень больше 10 секунд, это значит одно из двух.

Либо вы пока не до конца освоили этот метод, чтобы решать его в уме, и лучше пока записывать вычисления. Либо вы недооценили задачу и нужно использовать другой метод.

Например, второе бывает, когда ученик пытается подобрать корни через теорему Виета в уравнении, у которого иррациональные корни.

☝ Не спешите перемножать числа в дискриминанте.

Даже решение очень страшного уравнения можно упростить, не кидаясь сразу вычислять значение дискриминанта. Нас ведь интересует не он сам, а квадратный корень из него. Рассмотрим пример:

Обычно его начинают решать так:

Мало того, что при расчётах появились неприятные четырёхзначные числа, так дальше нам ещё нужно извлечь корень из полученного числа! Всё это довольно трудоёмко.

Проще решать задачу иначе. Не перемножать, а постепенно вычленять из дискриминанта множители-полные квадраты:

Можно было бы и из последней скобки вычленить полный квадрат, но уже и так понятно, что 196 — это полный квадрат.

☝ Используйте теорему Виета для проверки корней.

Обычно теорему Виета используют для подбора корней. Но на самом деле у неё есть ещё одно полезное применение. Как только вы каким-либо способом получили корни их всегда можно дополнительно легко проверить. По теореме Виета, если корни верные, то их произведение будет равно свободному члену, делённому на первый коэффициент, т.е. c/a.

☝ Задумайтесь, если коэффициенты иррациональны.

В подавляющем большинстве примеров квадратные уравнения имеют целочисленные коэффициенты. Если они дробные, то их всегда можно (и нужно!) привести к целым. Однако, при вычислениях может получиться, что какой-то из коэффициентов нерациональный.

Если такое случается, то скорее всего при обратной замене переменной. И это подозрительно. Нужно ещё раз перепроверить предыдущие вычисления. В очень редких случаях (если экзамены высокого уровня) бывает, что так и было задумано.

Но в реальности скорее всего до этого была сделана ошибка.

Источник: https://zen.yandex.ru/media/id/5d7b0f991ee34f00ac847673/pravila-resheniia-kvadratnyh-uravnenii-5ddb9707e745e8330fb197f2

Решение квадратных уравнений: формула корней, примеры

Квадратное уравнение x. Способы решения квадратных уравнений

В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

Квадратное уравнение, его виды

Определение 1

Квадратное уравнение – это уравнение, записанное как a·x2+b·x+c=0, где x – переменная, a, b и c – некоторые числа, при этом a не есть нуль.

Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

Приведем пример для иллюстрации заданного определения: 9·x2+16·x+2=0;  7,5·x2+3,1·x+0,11=0 и т.п. – это квадратные уравнения.

Определение 2

Числа a, b и c – это коэффициенты квадратного уравнения a·x2+b·x+c=0, при этом коэффициент a носит название первого, или старшего, или коэффициента при x2, b – второго коэффициента, или коэффициента при x, а c называют свободным членом.

К примеру, в квадратном уравнении 6·x2−2·x−11=0 старший коэффициент равен 6, второй коэффициент есть −2, а свободный член равен −11. Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6·x2−2·x−11=0, а не 6·x2+(−2)·x+(−11)=0.

Уточним также такой аспект: если коэффициенты a и/или b равны 1 или −1, то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y2−y+7=0 старший коэффициент равен 1, а второй коэффициент есть −1.

Приведенные и неприведенные квадратные уравнения

По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

Определение 3

Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1. При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

Приведем примеры: квадратные уравнения x2−4·x+3=0, x2−x−45=0 являются приведенными, в каждом из которых старший коэффициент равен 1.

9·x2−x−2=0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1.

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

Пример 1

Задано уравнение 6·x2+18·x−7=0. Необходимо преобразовать  исходное уравнение в приведенную форму.

Решение

Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6. Тогда получим: (6·x2+18·x−7):3=0:3, и это то же самое, что: (6·x2):3+(18·x):3−7:3=0 и далее: (6:6)·x2+(18:6)·x−7:6=0. Отсюда: x2+3·x-116=0. Таким образом, получено уравнение, равносильное заданному.

Ответ:x2+3·x-116=0.

Полные и неполные квадратные уравнения

Обратимся к определению квадратного уравнения. В нем мы уточнили, что a≠0. Подобное условие необходимо, чтобы уравнение a·x2+b·x+c=0 было именно квадратным, поскольку при a=0 оно по сути преобразуется в линейное уравнение b·x+c=0.

В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

Определение 4

Неполное квадратное уравнение – такое квадратное уравнение a·x2+b·x+c=0, где хотя бы один из коэффициентов b и c (или оба) равен нулю.

Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

При b=0 квадратное уравнение примет вид a·x2+0·x+c=0, что то же самое, что a·x2+c=0. При c=0 квадратное уравнение записано как a·x2+b·x+0=0, что равносильно a·x2+b·x=0.

При b=0 и c=0 уравнение примет вид a·x2=0. Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x, либо свободного члена, либо обоих сразу.

Собственно, этот факт и задал название такому типу уравнений – неполное.

Например, x2+3·x+4=0 и −7·x2−2·x+1,3=0 – это полные квадратные уравнения; x2=0, −5·x2=0; 11·x2+2=0, −x2−6·x=0 – неполные квадратные уравнения.

Решение неполных квадратных уравнений

Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

  • a·x2=0, такому уравнению соответствуют коэффициенты b=0 и c=0;
  • a·x2+c=0 при b=0;
  • a·x2+b·x=0 при c=0.

Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

Решение уравнения a·x2=0

Как уже было указано выше, такому уравнению отвечают коэффициенты b и c, равные нулю. Уравнение a·x2=0 возможно преобразовать в равносильное ему уравнение x2=0, которое мы получим, поделив обе части исходного уравнения на число a, не равное нулю.

Очевидный факт, что корень уравнения x2=0 это нуль, поскольку 02=0.

Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p, не равного нулю, верно неравенство p2>0, из чего следует, что при p≠0 равенство p2=0 никогда не будет достигнуто.

Определение 5

Таким образом, для неполного квадратного уравнение a·x2=0 существует единственный корень x=0.

Пример 2

Для примера решим неполное квадратное уравнение −3·x2=0. Ему равносильно уравнение x2=0, его единственным корнем является x=0, тогда и исходное уравнение имеет единственный корень – нуль.

Кратко решение оформляется так:

−3·x2=0,x2=0,x=0.

Решение уравнения a·x2+c=0

На очереди – решение неполных квадратных уравнений, где b=0, c≠0, то есть уравнений вида a·x2+c=0. Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

  • переносим c в правую часть, что дает уравнение a·x2=−c;
  • делим обе части уравнения на a, получаем в итоге x=-ca.

Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения.

От того, каковы значения a и c зависит значение выражения  -ca: оно может иметь знак  минус (допустим, если a=1 и c=2, тогда -ca=-21=-2 ) или знак плюс (например, если a=−2 и c=6, то -ca=-6-2=3 ); оно не равно нулю, поскольку c≠0. Подробнее остановимся на ситуациях, когда  -ca0.

В случае, когда -ca0, а это означает, что исходное уравнение будет иметь два действительных корня.
Для их нахождения используем формулу корня x=-b±D2·a и, подставив соответствующие значения, получим: x=-2±282·1. Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

x=-2±2·72

x=-2+2·72 или x=-2-2·72

x=-1+7 или x=-1-7

Ответ: x=-1+7​​​​​​, x=-1-7.

Пример 7

Необходимо решить квадратное уравнение −4·x2+28·x−49=0.

Решение 

Определим дискриминант: D=282−4·(−4)·(−49)=784−784=0. При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x=-b2·a.

Тогда:

x=-282·(-4)x=3,5

Ответ:x=3,5.

Пример 8

Необходимо решить уравнение 5·y2+6·y+2=0

Решение

Числовые коэффициенты этого уравнения будут: a=5, b=6 и c=2. Используем эти значения для нахождения дискриминанта: D=b2−4·a·c=62−4·5·2=36−40=−4. Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

x=-6±-42·5,

x=-6+2·i10 или x=-6-2·i10,

x=-35+15·i  или x=-35-15·i.

Ответ: действительные корни отсутствуют; комплексные корни следующие: -35+15·i, -35-15·i.

В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

Формула корней для четных вторых коэффициентов

Формула корней x=-b±D2·a (D=b2−4·a·c) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2·n, к примеру, 2 · 3 или 14·ln5=2·7·ln5). Покажем, как выводится эта формула.

Пусть перед нами стоит задача найти решение квадратного уравнения a·x2+2·n·x+c=0. Действуем по алгоритму: определяем дискриминантD=(2·n)2−4·a·c=4·n2−4·a·c=4·(n2−a·c), а затем используем формулу корней:

x=-2·n±D2·a,x=-2·n±4·n2-a·c2·a,x=-2·n±2n2-a·c2·a,x=-n±n2-a·ca.

Пусть выражение n2−a·c будет обозначено как D1 (иногда его обозначают D'). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид:

 x=-n±D1a, где D1=n2−a·c.

Легко увидеть, что что D=4·D1, или D1=D4. Иначе говоря, D1 – это четверть дискриминанта. Очевидно, что знак D1 такой же, как знак D, а значит знак D1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

Определение 11

Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом  2 · n , необходимо: 

  • найти D1=n2−a·c;
  • при D10 определить два действительных корня по формуле x=-n±D1a.

Пример 9

Необходимо решить квадратное уравнение 5·x2−6·x−32=0.

Решение

Второй коэффициент заданного уравнения можем представить как 2·(−3). Тогда перепишем заданное квадратное уравнение как 5·x2+2·(−3)·x−32=0, где a=5, n=−3 и c=−32.

Вычислим четвертую часть дискриминанта: D1=n2−a·c=(−3)2−5·(−32)=9+160=169. Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

x=-n±D1a,x=–3±1695,x=3±135,

x=3+135 или x=3-135

x=315 или x=-2

Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

Ответ: x=315 или x=-2.

Упрощение вида квадратных уравнений

Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

К примеру, квадратное уравнение 12·x2−4·x−7=0 явно удобнее для решения, чем 1200·x2−400·x−700=0.

Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200·x2−400·x−700=0, полученную делением обеих его частей на 100.

Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Как пример используем квадратное уравнение 12·x2−42·x+48=0. Определим НОД абсолютных величин его коэффициентов: НОД(12, 42, 48)=НОД(НОД(12, 42), 48)=НОД(6, 48)=6. Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2·x2−7·x+8=0.

Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 16·x2+23·x-3=0 перемножить с НОК(6, 3, 1)=6, то оно станет записано в более простом виде x2+4·x−18=0.

Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на −1. К примеру, от квадратного уравнения −2·x2−3·x+7=0 можно перейти к упрощенной его версии 2·x2+3·x−7=0.

Связь между корнями и коэффициентами

Уже известная нам формула корней квадратных уравнений x=-b±D2·a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

Самыми известными и применимыми являются формулы теоремы Виета:

x1+x2=-ba и x2=ca.

В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3·x2−7·x+22=0 возможно сразу определить, что сумма его корней равна 73, а произведение корней – 223.

Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

x12+x22=(x1+x2)2-2·x1·x2=-ba2-2·ca=b2a2-2·ca=b2-2·a·ca2.

Источник: https://Zaochnik.com/spravochnik/matematika/systems/reshenie-kvadratnyh-uravnenij/

О законе
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: